top of page
  • YouTube
  • Twitter
  • Facebook
  • Dr. Melody Medley-Keith

It Is A Matter of Balance

How Our Balance System Works

Balance and equilibrium help us stay upright when standing and know where we are in relation to gravity. Our balance system also helps us walk, run, and move without falling. Balance is controlled through signals to the brain from your eyes, the inner ear, and the sensory systems of the body (such as the skin, muscles, and joints). This balance system is also known as the vestibular system.


Sensory receptors in the retina are called rods and cones. Rods are believed to be tuned better for vision in low light situations (e.g. at night time). Cones help with color vision, and the finer details of our world. When light strikes the rods and cones, they send impulses to the brain that provide visual cues identifying how a person is oriented relative to other objects.


Proprioceptive information from the skin, muscles, and joints involves sensory receptors that are sensitive to stretch or pressure in the surrounding tissues. For example, increased pressure is felt in the front part of the soles of the feet when a standing person leans forward. With any movement of the legs, arms, and other body parts, sensory receptors respond by sending impulses to the brain. Along with other information, these stretch and pressure cues help our brain determine where our body is in space.

The Shuttle Balance @ Lakeway Aquatic Physical Therapy


Sensory information about motion, equilibrium, and spatial orientation is provided by the vestibular apparatus, which in each ear includes the utricle, saccule, and three semicircular canals. The utricle and saccule detect gravity (information in a vertical orientation) and linear movement. The semicircular canals, which detect rotational movement, are located at right angles to each other and are filled with a fluid called endolymph. When the head rotates in the direction sensed by a particular canal, the endolymphatic fluid within it lags behind because of inertia, and exerts pressure against the canal’s sensory receptor. The receptor then sends impulses to the brain about movement from the specific canal that is stimulated. When the vestibular organs on both sides of the head are functioning properly, they send symmetrical impulses to the brain.


Balance information provided by the peripheral sensory organs—eyes, muscles and joints, and the two sides of the vestibular system—is sent to the brain stem. There, it is sorted out and integrated with learned information contributed by the cerebellum (the coordination center of the brain) and the cerebral cortex (the thinking and memory center). The cerebellum provides information about automatic movements that have been learned through repeated exposure to certain motions. For example, by repeatedly practicing balance an individual learns to optimize balance control during that movement.

Balance Testing

If you feel you need to improve your Balance, we can help.

A balance system assessment is recommended when a person has a any fall or trips.

Call us at Lakeway Aquatic Physical Therapy 512-261-0620

Reference; Vestibular Disorders Association, with contributions by Mary Ann Watson, MA, and F. Owen Black, MD, FACS, and Matthew Crowson, MD

36 views0 comments


bottom of page